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Effective volume of specimens in diametral
compression
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A calculation was performed to find the effective tensile volume for diametral compression

tests of brittle materials. Both disc and spherical geometries were investigated. The effective

volume equation for disc specimens separates into materials-dependent and geometry-

dependent functions, which are separately solved. The effective volume equation for

spherical specimens is mathematically more difficult and less enlightening.
1. Introduction
Diametral compression is used to measure tensile fail-
ure in disc-shaped brittle specimens [1, 2]. One typical
application is the quantification of concrete degrada-
tion using slices of a drilled core. Diametral compres-
sion does not require extensive machining of
specialized shapes and it is self-aligning. One disad-
vantage is that the stress state, while known for some
time [3], is complex. This makes it difficult to compare
data from a diametral compression test to data from
a uniaxial tension test or a flexure test. More recently,
spheres have been used in diametral compression [4].
The stress state in a compressed sphere is similarly
known and complex.

The purpose of this work is to report an effective
uniaxial volume under load for diametral compres-
sion tests. Both disc and spherical geometries are
considered.

The failure stress of a brittle material is related to
the stress applied, and the size, position and orienta-
tion of the most severe flaw. This may be treated using
weakest-link statistics to provide the probability of
failure as a function of stress. The resulting equation
follows [5].
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For a specimen under uniform uniaxial tensile
stress, the preferred testing technique, the equation
simplifies considerably.
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Under uniaxial stress, k
0

is one. A uniform stress
field does not require integration over the volume.
During the test, »"»

0
. Testing techniques with non-

uniform stress are often used instead of uniform tensile
testing because they are experimentally simpler. Data
from these techniques may be used in the same way as
data from uniform tensile testing with the difference
that »

%&&
(an effective volume under stress) is sub-

stituted for »
0
. The stress applied is generally taken as

the maximum stress in a non-uniform sampling tech-
nique. It is generally best to sample the largest volume
possible for good statistics, meaning that more uni-
form stress states are more desirable.

Ceramics generally fail in pure tension; therefore
compressive stresses do not contribute to the prob-
ability of failure. Calculations may be simplified
by assuming all compressive stresses to have zero
magnitude.

The material specific parameters necessary to make
design predictions are r

0
, m and »

0
or »

%&&
. These

values, coupled with the internal stresses of a known
design allow calculation of the probability of failure. If
diametral compression is to be used to make design
decisions, the effective volume must be known.

In a thin disc specimen subjected to diametrically
opposed in-plane line loads, the stress is assumed
uniform across the thickness. The stress is therefore
two-dimensional. The vertical stress is compressive
(negative) everywhere; therefore it is ignored. The

horizontal stress perpendicular to the line of applied
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force (r
)
) is tensile throughout most of the volume (see

Fig. 1). It exhibits a stress singularity near the point
forces, but this singularity is compressive, and may be
ignored. The functional form of r
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where P/t"line force applied; t"disc thickness; D"

disc diameter; a"vertical distance from point of ap-
plication of line force; and h"angle from vertical.
Subscripts 1, 2 refer to the points of application of
forces 1, 2.

The coordinate system is shown diagrammatically
in Fig. 2. The preceding formula is taken from [3],
Equation 66, modified by the discussion in Section 41.

Figure 1 Distribution of uniaxial tensile stress in a diametrically
compressed disc specimen.
Figure 2 Coordinate system for a disc in diametral compression.
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The equation is the juxtaposition of three stress fields,
one generated by each point force and a uniform
tensile stress to ensure that the edge of the disc is stress
free. This stress maximum is 2P/pDt and occurs at the
loaded diameter, where h"0. Most disc specimens in
diametral compression fail near this diameter.

Exceptions occur when the ceramic fails in shear
(Hertzian contact failure) near the point of load ap-
plication. The fragments due to failure in shear differ
greatly from the fragments due to failure in tension.
Specimens that fail in shear may therefore be excluded
from the statistical sample.

The stress state in spherical specimens under dia-
metrically opposed point forces is similarly known.
The system is cylindrically symmetrical. The z stress
component is compressive (negative) everywhere;
therefore it is ignored. The radial stress perpendicular
to the line of applied force (r

3
) is tensile throughout

much of the volume (see Fig. 3). The extent of the
tensile stress is not a function of Poisson’s ratio. The
functional form of r

3
is
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where R"the radius of the sphere.
The hoop stress, rh , is tensile throughout the vol-

ume of the sphere. The functional form of rh is
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Figure 3 Extent of radial tensile stress in a compressed spherical

specimen.



Figure 4 Coordinate system for a compressed sphere.

The preceding formulae are taken from [6],
Equation 211. The origin is the point of applica-
tion of one force. The other force is applied at
z"2R, see Fig. 4.

2. Approach
Before integrating over the disc volume using
Equation 3, we shift the origin to the centre of the
circle and normalize it so we integrate over the unit
circle. First, we make the following substitutions into
Equation 3:
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x and y are normalized with respect to the radius of
the disc, and define distances from the centre.

After substitution, Equation 2 has the form
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The part of the failure equation inside the exponen-
tial parentheses is the risk of rupture: B. We are

looking for a relationship for »
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so that B for the disc
equals B of a uniaxial tensile sample of volume
»
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When we substitute Equation 6 into Equation 1, we get
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If we then define r"2P/pDt, and rearrange, we get
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The integral is a function of m only, and may be
called N (m). The positive (tensile) portion of N(m) has
been numerically integrated for m ranging from 1 to 30
in increments of 0.1. These values appear in the
Appendix. The function is a smoothly decreasing func-
tion and may be approximated by the function

N (m)"0.21209 m~0.48338

This approximation is accurate to better than 2%
over the range calculated.

Before integrating over the volume of a sphere using
Equations 4 and 5, we shift the origin to the centre of
the circle and normalize it. First, we make the follow-
ing substitutions into Equations 4 and 5;

z"R(1!y)

(2R!z)"R(1#y)

r"Rx

After substitution, Equation 4 has the form
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Equation 5 has the form
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When integrating these formulae over the unit
circle, note that the relation

1

x2 C2!
(1!y)

[x2#(1!y)2]0.5
!

(1#y)

[x2#(1#y)2]0.5D
(10)

in Equations 8 and 9 is undefined for x"0. In the
limit xP0, it does however converge to
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The numerical integration of the effective volume
for a spherical sample is the sum of three integrations.
One is near x"0 using Equation 11 calculating for
a biaxial stress state. The second is over the volume in
biaxial tension, away from x"0. The third is over the
volume under uniaxial tension. The stress state is
biaxial along the stressed diameter.

Two approaches present themselves for calculating
the effective volume under biaxial stress. The first is to
use the principle of independent action (PIA) [7],
assuming the probability of failure is the sum of prob-
abilities of failure for each principle stress. Alterna-
tively, one could apply the normal stress averaging
(NSA) theory [5], integrating about the unit circle for
each point to find the probability of failure. It is not
useful to apply Batdorf theory [8]. Because of the
extremely high Hertzian contact stresses, if the mater-
ial is shear-sensitive, it will fail in shear, and not be
a valid representation of a uniaxial stress state.
For non-shear sensitive materials, Batdorf theory
simplifies to NSA theory.

Effective volume for a spherical compression speci-
men is a function of three variables, whereas the disc
was a function of one variable only. The internal
stresses in a sphere are a function of Poisson’s ratio.
Granted, Poisson’s ratio does not vary much for most
engineering materials, but a separate table would be
needed for each value of Poisson’s ratio if the data are
presented in tabular form. A more serious problem is
the tensile singularity near the points of applied force.
When integrated over the volume of the sphere, this
function leads to an effective volume of zero. Spheres
of real materials placed in diametral compression de-
form, and the force is not a point force. The function
can therefore be integrated to some y less than one,
avoiding the singularity. This is a mathematically
simple and physically reasonable approximation. The
effective volume of a sphere under diametral compres-

sion is therefore a function of the Weibull exponent,
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Poisson’s ratio and the distance the sphere is com-
pressed. Unless Equation 5 can be solved in closed
form, this makes the solution intractable. Even if it is,
measuring the deformation distance adds a level of
experimental complexity.

In addition to adding to the computational
difficulty, the high contact stress decreases the effective
volume. Consider a typical engineering material
under 1% deformation with a Weibull modulus
of 10. The average stress in the 0.01 of the volume
near the contact point is 5000 times that in the rest
of the sample, leading to an effective volume less
than 10~5.

3. Summary
The stress field in a compressed disc specimen is integ-
rated to find the effective tensile volume. The resulting
effective volumes are monotonically decreasing with
increasing m. The results are tabulated in the Appen-
dix. A method is outlined for performing a similar
calculation on spherical specimens. It is concluded,
however, that such calculations are best done on an
as-needed basis.
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Appendix: normalized effective volume for a range of Weibull exponents
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.21209 0.203495 0.195819 0.188912 0.182661 0.17697 0.171763 0.166976 0.162558 0.15846
2 0.154656 0.151105 0.147783 0.144666 0.141735 0.138973 0.136363 0.133893 0.131551 0.12932
3 0.127208 0.125191 0.123265 0.121425 0.119663 0.117976 0.116358 0.114803 0.113309 0.11187
4 0.110487 0.109152 0.107864 0.10662 0.105418 0.104256 0.103131 0.102041 0.100986 0.09996
5 0.098968 0.098003 0.097066 0.096155 0.09527 0.094408 0.093569 0.092752 0.091956 0.09118
6 0.090423 0.089685 0.088964 0.088261 0.087573 0.086902 0.086246 0.085604 0.084977 0.08436
7 0.083762 0.083174 0.082598 0.082033 0.08148 0.080939 0.080407 0.079886 0.079375 0.07887
8 0.078382 0.077899 0.077425 0.07696 0.076502 0.076053 0.075612 0.075178 0.074752 0.07433
9 0.07392 0.073514 0.073115 0.072723 0.072337 0.071956 0.071582 0.071214 0.070851 0.07049

10 0.070141 0.069795 0.069453 0.069116 0.068784 0.068457 0.068134 0.067816 0.067503 0.06719
11 0.066888 0.066587 0.06629 0.065997 0.065708 0.065422 0.065141 0.064862 0.064588 0.06431
12 0.064049 0.063784 0.063523 0.063265 0.06301 0.062758 0.062509 0.062263 0.06202 0.06178
13 0.061543 0.061308 0.061076 0.060846 0.060619 0.060395 0.060173 0.059954 0.059736 0.05952
14 0.059309 0.059099 0.058891 0.058685 0.058481 0.05828 0.05808 0.057883 0.057687 0.05749
15 0.057302 0.057113 0.056925 0.056739 0.056555 0.056372 0.056192 0.056013 0.055836 0.05566
16 0.055486 0.055314 0.055143 0.054974 0.054807 0.054641 0.054476 0.054313 0.054151 0.05399
17 0.053832 0.053675 0.053519 0.053365 0.053211 0.053059 0.052908 0.052759 0.052611 0.05246
18 0.052318 0.052174 0.05203 0.051888 0.051747 0.051608 0.051469 0.051331 0.051195 0.05105
19 0.050925 0.050792 0.050659 0.050528 0.050398 0.050269 0.05014 0.050014 0.049887 0.04976
20 0.049638 0.049514 0.049392 0.04927 0.049149 0.049029 0.04891 0.048792 0.048675 0.04855
21 0.048443 0.048328 0.048214 0.048101 0.047989 0.047877 0.047766 0.047656 0.047547 0.04743
22 0.047331 0.047223 0.047117 0.047012 0.046907 0.046802 0.046699 0.046596 0.046494 0.04639
23 0.046291 0.046191 0.046092 0.045993 0.045895 0.045797 0.0457 0.045603 0.045508 0.04541
24 0.045317 0.045223 0.04513 0.045037 0.044945 0.044853 0.044762 0.044671 0.044581 0.04449
25 0.044403 0.044314 0.044226 0.044139 0.044052 0.043966 0.04388 0.043795 0.04371 0.04362
26 0.043541 0.043458 0.043375 0.043293 0.043211 0.043129 0.043048 0.042967 0.042887 0.04280
27 0.042728 0.042649 0.042571 0.042493 0.042416 0.042338 0.042262 0.042185 0.04211 0.04203
28 0.041959 0.041884 0.04181 0.041736 0.041663 0.04159 0.041517 0.041445 0.041373 0.04130
29 0.04123 0.041159 0.041089 0.041018 0.040949 0.040879 0.04081 0.040741 0.040673 0.04060

30 0.040537
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